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Transition events in one dimension
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The instanton or stationary-phase formula has received much attention recently as a way of determining
transition paths in reacting systems. In this paper, we analyze the instanton approach for some one-dimensional
problems and compare the results it gives with data from a numerical simulation. We show that a proper
comparison of the analytic and numerical results must take into account the boundary conditions used in the
numerical simulations and also suggest values for the integration constant in the instanton formula that gives
the best agreement with the simulated results.
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I. INTRODUCTION

The concept of a reaction path, although a simplificati
is an important one in molecular science. A path provide
mechanistic picture of how molecules move from one reg
of configuration space to another, and can be used to ob
numerical results, usually related to the kinetics or the th
modynamics of the transition process. There are many
proaches for determining reaction paths, but one, which
term the instanton approach, has received much attentio
cently @1–4#.

Consider a system whose dynamics is Brownian and
governed by the overdamped Langevin equation

dx

dt
5

DF~x!

kBT
1R~ t !. ~1!

Herex is the position,t is the time,D is the diffusion con-
stant,T is the temperature, andkB is Boltzmann’s constant
F(x) is the force on the particle and is equal
2]U(x)/]x ([2U8), whereU(x) is the potential energy
R(t) is a Gaussian random force with zero mean and v
ance:

^R~ t !R~0!&52Dd~ t !. ~2!

An expression for the transition probability,P, that a sys-
tem starting ata will be at positionx after a timet can be
derived and is a path integral that sums over all paths
start ina and end inx with time t @5,6#:

P~x,tua,0!5E
(0,a)

(t,x)

Dx~s!e2S[x] . ~3!
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Heres is a parameter that defines the degree of advance
path andS@x# can be considered to be an action that is giv
by

S@x#5
1

4DE
0

t

dsF S ẋ~s!2
DF„x~s!…

kBT D 2

1
2D2F8„x~s!…

kBT G .
~4!

Due to the position of the action in the exponential, the t
jectories that contribute most to the transition probability a
those that minimize the action. Such a minimization leads
a deterministic equation of motion that in quantum mech
ics is called the instanton@5#. The equation of motion is

~ ẋc!
25S DF~x!

kBT D 2

2
2D2F8~x!

kBT
1C, ~5!

where ẋc is the instanton velocity andC is a constant of
integration whose value needs to be determined. Know
the velocity the total time for a transition can be calculat
from

t5E
a

b dx

ẋc

, ~6!

where the starting and finishing values ofx are taken to be in
the range@a,b#.

Equations~5! and~6! can, in principle, provide much use
ful information concerning transitions in reacting system
but there remain a number of unresolved questions~for a
fuller discussion of which, see Ref.@7#!. Open questions in-
clude:~i! the proper choice of the integration constant,C, in
Eq. ~5! because for certain values and potentials the velo
can become imaginary and because the value ofC deter-
mines the geometry of the most probable path in multidim
sional potentials@3#; ~ii ! the importance of the force deriva
tive term in Eq. ~5! which has been neglected by man
workers in the field@1,3#; ~iii ! comparison of the instanton
approach with numerical simulation data. In the next secti
we attempt to resolve some of these questions for o
dimensional systems. The extension to many dimensions
be left to future work.
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II. INFLUENCE OF BOUNDARY CONDITIONS

Before proceeding to explicit cases, it is necessary to c
sider how instanton data can be compared to simulation
sults. It is straightforward to solve Eq.~1! with a suitable
finite-difference algorithm and observe that transitions occ
But how can transitions be picked out? One can start p
ticles at a minimum in the potential (x5a) and move them
until they cross the boundary atx5b that defines the start o
the product state. This corresponds to adding an absor
boundary atb. The trajectories calculated in this way wi
stay for a long time arounda and eventually get tob. For
molecular systems, the time of these trajectories,t rxn , is of
the order of the inverse reaction rate@8,9# and only the last
portions of these trajectories will correspond to actual tr
sitions. Therefore, a reasonable approach for picking
transitions, and the one used by previous workers@1,7,10#, is
to identify the transition timet trn as the interval between
consecutive crossings ofa and b. t trn is, in general, much
shorter thant rxn .

Although reasonable, it is important to emphasize that
way of identifying transitions is equivalent to adding abso
ing boundary conditions atx5a and x5b. This is to be
contrasted with the derivations of Sec. I, which were p
formed with the assumption of an infinite domain. This d
ference complicates comparison of the two methods as
boundary conditions will affect the path data. Unfortunate
the inclusion of boundary conditions in the derivation of t
instanton formula~using d functions! is not at all trivial
@11,12#.

III. FREE DIFFUSION

Motion in the absence of a potential is the simplest ca
and admits analytical solutions for both the probability d
tribution and the flux when there are absorbing boundarie
x50 and atx5b @13#. The t trn distribution for a particle
starting at positionx50 to attainx5b is given by the time
variation of the particle flux atb. The normalized flux atx
5b may be straightforwardly calculated and is

J~b,tua,0!5
22p2D

b2 (
n51

`

expF2S np

b D 2

DtGn2~21!n.

~7!

Figure 1 shows a comparison between the results obta
with Eq. ~7! and a numerical simulation. In addition to th
full analytic result, the figure also shows an approximation
the flux obtained by taking the first two terms of Eq.~7!. The
agreement is good at long times, and both the height and
position of the maximum flux are well approximated. In t
two-term approximation the maximum flux occurs at a tim
of

t trn5
log~16!

3p2

b2

D
, ~8!

which is about 2% in error. This time defines the most pro
able ~MP! t trn .
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The MP t rxn is obtained if the same calculation is pe
formed for the case of a single absorbing barrier atx5b.
The result is@14#

t rxn5
1

6

b2

D
. ~9!

Even thought rxn is not really the time for a reaction, be
cause the particle is not in any well, we see that the bound
conditions affect thet trn and that we havet trn,t rxn . How-
ever, we also see that both times scale as the square o
distance to be covered and the inverse of the diffusion c
stant. This is a typical behavior for a diffusing particle.

Putting these results into Eq.~6! allows us to estimate a
value for the constantC for the free-diffusion process, which
is

C5S 3p2D

b log~16! D
2

. ~10!

This means thatC depends upon the size of the domain
contrast, for example, to values of the constant chosen
similar context by Elber and Shalloway@3#. The same depen
dence upon distance traveled is also found for theaverage
t trn @10#.

Plots of average position for a simulated particle vers
time are shown in Fig. 2. All trajectories have total tim
given by the MP times of Eqs.~8! and ~9!. When there are
two absorbing boundaries, the average position in the ce
of the trajectory changes linearly with time, in accord wi
Eq. ~5!. Towards the boundaries, however, the particle acc
erates due to the presence of the boundary conditions@10–
12#. This is because simulation steps that cross a bound
are omitted, leading to a bias towards trajectories with
higher velocity at the edge of the simulation domain. Th
behavior at the boundaries was also noticed by Zuckerm
and Woolf @4#, but they did not specify its origin. If the
absorbing boundary atx50 is removed, the trajectory in th

FIG. 1. t trn distributions for Brownian motion in the absence
a potential. The numerical results~gray! are compared with the
analytical result of Eq.~7! using expansions of 15 terms~solid line!
and only two terms~dashed line!. In all simulations in this paper
kBT51, D51, b54, and the numerical integration time stepDt
51023.
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region of the boundary becomes linear, in agreement with
instanton approach, and the time for the MP trajectory
creases, the difference being given by Eqs.~8! and ~9!. The
solid line in Fig. 2 is the instanton result with the value ofC
from Eq. ~10! and it does not reproduce the accelerations
the boundaries.

IV. EXTERNAL POTENTIALS: INFLUENCE
OF THE SECOND DERIVATIVE TERM

In this section we will consider the influence of the for
derivative term in Eq.~5! and see if the value ofC in Eq.
~10! is transferable to cases where a potential is present.
consider a harmonic potential of the formU5kx2/2, where
the potential can have positive~well! or negative~barrier!
signs. Importance sampling was used to speed up the
merical calculations for positivek @4#. The resulting arrival
time distributions were then fitted to a generalized form
the equation used by Zuckerman and Woolf@7#,

Pt trn
5exp~a/t1b1gt !, ~11!

and the MPt trn were deduced from the maxima of the fitte
curves.

Plots of thet trn distributions for potentials with the sam
absolute value ofuku but with different signs are given in Fig
3. The distributions are different due to the importance of
second derivative term in Eq.~5!. This is not a result of the
ascending or descending character of the potential bec
ascending or descending linear potentials (U56kx) give
exactly the same distributions~data not shown!. The differ-
ence between the MPt trn for the sameuku diminishes as
temperature decreases and becomes negligible in the lim
low temperature@1#.

Inclusion of the force derivative term for positive pote
tials leads to a negative term that can cause the velocity t
imaginary. Manipulation of Eq.~5! shows that this will occur
when

FIG. 2. Plots of^x& vs time for a diffusion process with on
absorbing barrier atx54 ~black boxes! and with two absorbing
barriers atx50 and 4~gray triangle!. The solid line is the result
predicted by Eq.~5!.
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CkBT

2D2
. ~12!

Whenever this condition is satisfied, the total time, det
mined from Eq.~6!, is undefined. If one chooses the valu
C50, then the region with imaginary velocity is given by

xPA2kBT

k
. ~13!

Interestingly, this is the region where the energy of the p
ticle is below the thermal energykBT. This is probably the
underlying reason that led Astumianet al. @1# to say that the
instanton approach is not valid close to the minimum. F
k→0, the complete interval (0,b) should have an imaginary
velocity. However, in this case, it is clear that the choice
C50 is not valid, as the reaction is diffusion controlled, a
a better choice forC is given by Eq.~10!.

In order to compare velocities we will use the concept
the local time, that can be defined as@10#

La5 lim
d→0

1

2dE0

tbI$xP~a2d,a1d!%ds, ~14!

whereI$Q%51 if Q is true, and is zero otherwise. The loc
time represents the ‘‘density’’ of time per unit length and
integration for all the path length gives the total duration
the path. It is a stochastic variable but its average is smo
and can be considered as the inverse of the average velo
The use of a quantity that is a function of the coordinates
not of time allows for a direct comparison with Eq.~5!. The
calculation of the velocity via d̂x&/dt is more cumbersome
because we have to transform a dependence on time
dependence on position and this can only be done know
the time-dependent probability distribution which is not no
mally available.

Figure 4 shows the results obtained by using the form
for the instanton velocity@Eq. ~5!#, with C50 and withC
given by the free diffusion value of Eq.~10!. At lower bar-
riers the free-diffusion value gives a much better agreem
with experiment. As the barrier gets larger, the MPt trn gets
smaller and so particles arrive, on average, more quic

FIG. 3. t trn distributions for Brownian motion in harmonic po
tentials withk55 ~black boxes! andk525 ~gray triangles!.
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The distributions of arrival times also get more compact,
that there is less dispersion and the instantonic trajec
becomes more representative. Eventually theC defined in
Eq. ~10! gives an imaginary velocity forx;0 and the total
t trn is undefined. A comparison with the simulation is im
possible here because the region of imaginary velocity c
responds to the region where the instanton approach f
Practically, however, the value ofC is less relevant in thes
regimes as the magnitude of the velocity in the region of

FIG. 4. Inverse of the local time vs position for Brownian m
tion in harmonic potentials. Top:uku51 and bottomuku55. Posi-
tive k ~gray triangles! and negativek ~black boxes! show better fits
to the predicted velocities of Eq.~5! with a value forC given by Eq.
~10! (k,0 solid line, k.0 dotted line! than with C50 (k,0,
short dashed line;k.0, long dashed line!. Da5b/100 and the
number of paths is 105.
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barrier@from Eq.~5!# is determined largely by the force term
and not byC. Thus, to summarize, choosingC via Eq. ~10!
gives a smooth transition between the diffusion-control
and drift-controlled regimes in the description of the velo
ity.

V. SUMMARY

In this paper we have compared the information giv
about transition processes using the instanton approach
that from a numerical simulation. We have shown tha
proper comparison of results from the two methods requ
a consideration of the boundary conditions used to iso
transitions, and that the instanton formulas are not va
close to the boundaries. In addition we estimated a value
theC constant from the free diffusion case, and examined
pertinence for describing transitions with harmonic pote
tials of various force constants. The value ofC is only criti-
cal when the transition process is diffusion controlled. Wh
a high potential barrier is present, the value ofC is much
smaller than the force and is thus less relevant. Finally,
also evaluated the importance of the force derivative te
These results are also valuable for constructing biased im
tance sampling schemes to find optimum trajectories.

Our future work will be focused in two directions. Firs
more theoretical work is necessary to elucidate the effec
boundary conditions on the determination of transition tim
Second, we want to investigate the forms of the paths
the instanton approach gives in more than a single dimen
and how good a representation they are of the most prob
or average paths arising from numerical simulation. The c
rent work was a necessary preliminary to work in many
mensions because the distribution of arrival times and
velocity with which a certain path is traveled helps determ
the shape of a path on a multidimensional potential ene
surface.
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