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Transition events in one dimension
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The instanton or stationary-phase formula has received much attention recently as a way of determining
transition paths in reacting systems. In this paper, we analyze the instanton approach for some one-dimensional
problems and compare the results it gives with data from a numerical simulation. We show that a proper
comparison of the analytic and numerical results must take into account the boundary conditions used in the
numerical simulations and also suggest values for the integration constant in the instanton formula that gives
the best agreement with the simulated results.
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[. INTRODUCTION Heresis a parameter that defines the degree of advance of a
path andS[ x] can be considered to be an action that is given
The concept of a reaction path, although a simplificationby
is an important one in molecular science. A path provides a

mechanistic picture of how molecules move from one region 1 ‘sl [ DF(x(s))|? 2D?F’(x(s))
of configuration space to another, and can be used to obtain SIx]= 4D J, S | x(s)— kT + kT :
numerical results, usually related to the kinetics or the ther- (4)

modynamics of the transition process. There are many ap-

proaches for determining reaction paths, but one, which w@ue to the position of the action in the exponential, the tra-
term the instanton approach, has received much attention rgactories that contribute most to the transition probability are

cently [1—4]. o _ ‘those that minimize the action. Such a minimization leads to
Consider a system whose dynamics is Brownian and i deterministic equation of motion that in quantum mechan-
governed by the overdamped Langevin equation ics is called the instantofb]. The equation of motion is
dx DF(X)+R L ., [DF(x)\* 2D?F'(x) c .
E_ kBT (t) ( ) (Xc) - kBT kBT ’ ( )

Herex is the positiont is the time,D is the diffusion con- where x. is the instanton velocity an€ is a constant of

stant, T is the temperature, arld; is Boltzmann’s constant. integration whose value needs to be determined. Knowing

F(x) is the force on the particle and is equal to the velocity the total time for a transition can be calculated

—dU(x)/ox (=—U"), whereU(x) is the potential energy. from

R(t) is a Gaussian random force with zero mean and vari-

ance: b dx
t:J -, (6)

aXC

(R(OR(0))=2D &(t). )
An expression for the transition probabilify, that a sys- where the starting and finishing valuesxddre taken to be in

tem starting ata will be at positionx after a timet can be the rangg a,b].

derived and is a path integral that sums over all paths thaft E_quatlon_s(S) and(®) can, in pr|r_1(_:|ple, _prowde_much use-
; X s s ul information concerning transitions in reacting systems
start ina and end inx with time t [5,6]:

but there remain a number of unresolved questiios a
(i) fuller discussion of whiqh, see Re{_ﬂ]). Open question; in-
P(X.tla,0)=J Dx(s)e” M, (3)  clude:(i) the proper choice of the integration constabtin
(0) Eq. (5) because for certain values and potentials the velocity
can become imaginary and because the valu€ afeter-
mines the geometry of the most probable path in multidimen-
*Electronic address: crehuet@ibs.fr sional potential$3]; (ii) the importance of the force deriva-
"Electronic address: mijfield@ibs.fr tive term in Eq.(5) which has been neglected by many
*Electronic  address:  Eric.Pellegrini@chemie.uni-erlangen.davorkers in the field'1,3]; (i) comparison of the instanton
Present address: TORUS Research Team, Computer—Chemi@pproach with numerical simulation data. In the next sections
Centrum and Institute for Organic Chemistry, University of we attempt to resolve some of these questions for one-
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many. be left to future work.
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II. INFLUENCE OF BOUNDARY CONDITIONS 0.4

Before proceeding to explicit cases, it is necessary to con- °-35
sider how instanton data can be compared to simulation re. 4
sults. It is straightforward to solve E@l) with a suitable
finite-difference algorithm and observe that transitions occur.
But how can transitions be picked out? One can start pars .»
ticles at a minimum in the potentiak&a) and move them
until they cross the boundary at=b that defines the start of
the product state. This corresponds to adding an absorbini o.1
boundary ath. The trajectories calculated in this way will
stay for a long time around and eventually get td. For
molecular systems, the time of these trajectorigg,, is of
the order of the inverse reaction rd&9] and only the last Tern
portions of these trajectories will correspond to actual tran- o ) o
sitions. Therefore, a reasonable approach for picking out FIG. 1. 7, distributions for Brownian motion in the absence of

transitions, and the one used by previous workérg,10, is 2 potgntial. The numerica! resul(gra;@ are compared With the
to identify the transition timery, as the interval between analytical result of Eq(7) using expansions of 15 ternisolid line)

) . S and only two termgdashed ling In all simulations in this paper
consecutive crossings @f and b. 7, is, in general, much _ _ _ C o o
kgT=1, D=1, b=4, and the numerical integration time staAp
shorter thanr,. 3

L . .=10
Although reasonable, it is important to emphasize that this
way of identifying transitions is equivalent to adding absorb- |4 MP 7., is obtained if the same calculation is per-

ing boundary_ condition§ at=2a and x=b. Thi; is to be formed for the case of a single absorbing barriexatb.
contrasted with the derivations of Sec. I, which were Perrhe result is[14]

formed with the assumption of an infinite domain. This dif-
ference complicates comparison of the two methods as the 1 b2

boundary conditions will affect the path data. Unfortunately, =g o - 9
the inclusion of boundary conditions in the derivation of the
instanton formula(using § functiong is not at all trivial
[11,12.

0.25

0.15

Even thoughr,, is not really the time for a reaction, be-
cause the particle is not in any well, we see that the boundary
conditions affect ther,, and that we have,<7,,,. How-

IIl. FREE DIFFUSION ever, we also see that both times scale as the square of the
Motion in the absence of a potential is the simplest Case('jistance to be covered and the inverse of the diffusion con-

and admits analytical solutions for both the probability dis-Stant. This is a typical behavior for a diffusing particle.

tribution and the flux when there are absorbing boundaries at Putting these results into E¢G) allows us to estimate a
x=0 and atx=b [13]. The ,, distribution for a particle value for the constar@ for the free-diffusion process, which

starting at positiork=0 to attainx="b is given by the time 'S

variation of the particle flux ab. The normalized flux ak 372D |2
=b may be straightforwardly calculated and is N (10)
blog(16)/ °
—27°D . n\? . : in i
J(b,t|a,0)= T Z exp — o Dt |n%(—1)". This means tha€ depends upon the size of the domain in
n=1

contrast, for example, to values of the constant chosen in a
() similar context by Elber and Shallow$]. The same depen-

. . . i led is also f for akn
Figure 1 shows a comparison between the results obtalned nc[elg]pon distance traveled is also found foraierage
m .

with Eq. (7) and a numerical simulation. In addition to the T
full analytic result, the figure also shows an approximation tot
the flux obtained by taking the first two terms of E@). The
agreement is good at long times, and both the height and t
position of the maximum flux are well approximated. In the
two-term approximation the maximum flux occurs at a time
of

Plots of average position for a simulated particle versus
ime are shown in Fig. 2. All trajectories have total times
iven by the MP times of Eq<8) and(9). When there are
W0 absorbing boundaries, the average position in the center
of the trajectory changes linearly with time, in accord with
Eq. (5). Towards the boundaries, however, the particle accel-
erates due to the presence of the boundary condifib®s
2 12]. This is because simulation steps that cross a boundary
log(16) b_ (g are omitted, leading to a bias towards trajectories with a

m? D’ higher velocity at the edge of the simulation domain. This

behavior at the boundaries was also noticed by Zuckerman
which is about 2% in error. This time defines the most prob-and Woolf [4], but they did not specify its origin. If the
able (MP) 7. absorbing boundary at=0 is removed, the trajectory in the

Ttrn ™
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FIG. 3. 7, distributions for Brownian motion in harmonic po-

FIG. 2. Plots of(x) vs time for a diffusion process with one tentials withk=5 (black boxes andk=—5 (gray triangles

absorbing barrier ak=4 (black boxeg and with two absorbing
barriers atx=0 and 4(gray triangle. The solid line is the result
predicted by Eq(5). CkgT
k> .

2D?

(12

region of the boundary becomes linear, in agreement with the

instanton approach, and the time for the MP trajectory in‘Whenever this condition is satisfied, the total time, deter-
creases, the difference being given by E@.and(9). The  mined from Eq.(6), is undefined. If one chooses the value
solid line in Fig. 2 is the instanton result with the value@f C=0, then the region with imaginary velocity is given by
from Eq.(10) and it does not reproduce the accelerations at

) 2kgT
the boundaries. Xe \/ kB : (13

IV. EXTERNAL POTENTIALS: INFLUENCE Interestingly, this is the region where the energy of the par-
OF THE SECOND DERIVATIVE TERM ticle is below the thermal enerdsT. This is probably the

underlying reason that led Astumi&t al. [1] to say that the
In this section we will consider the influence of the force; ying 4] y

o , X ) instanton approach is not valid close to the minimum. For
denv_atlve term in Eq(5) and see if the valqe Oﬁ: in Eq. k—0, the complete interval (B) should have an imaginary
(10) is transferable to cases where a potentlalzls present. V\"\(;elocity. However, in this case, it is clear that the choice of
consider a harmonic POte”t!?' of the for= k)_( 12, wh_ere C=0 is not valid, as the reaction is diffusion controlled, and
the potential can have positivavell) or negative(barrien a better choice fo€ is given by Eq.(10).

sign_s. llmplort?n_ce s?mpling_ .W;S useﬁ to Spfed up .thel MU= |n order to compare velocities we will use the concept of
merical calculations for positiv [4]. The resu ting arrival 0 |ocal time, that can be defined A<
time distributions were then fitted to a generalized form of

the equation used by Zuckerman and WddaTf,

t
L= im— [ "Zixe (a— 5,2+ )1ds, (14)
5-020J0
P, = explalt+B+yt), (12)
whereZ{®}=1 if O is true, and is zero otherwise. The local
time represents the “density” of time per unit length and its

and the MPr,,, were deduced from the maxima of the fitted integration for all the path length gives the total duration of
curves. the path. It is a stochastic variable but its average is smooth

Plots of ther,, distributions for potentials with the same and can be considered as the inverse of the average velocity.
absolute value dfk| but with different signs are given in Fig. The use of a quantity that is a function of the coordinates and
3. The distributions are different due to the importance of thenot of time allows for a direct comparison with E@). The
second derivative term in E@5). This is not a result of the calculation of the velocity via (k)/dt is more cumbersome
ascending or descending character of the potential becaubecause we have to transform a dependence on time to a
ascending or descending linear potentidls=(+=kx) give  dependence on position and this can only be done knowing
exactly the same distributior(slata not shown The differ-  the time-dependent probability distribution which is not nor-
ence between the MR, for the samelk| diminishes as mally available.
temperature decreases and becomes negligible in the limit of Figure 4 shows the results obtained by using the formula
low temperaturé1]. for the instanton velocityEq. (5)], with C=0 and withC

Inclusion of the force derivative term for positive poten- given by the free diffusion value of Eq10). At lower bar-
tials leads to a negative term that can cause the velocity to baers the free-diffusion value gives a much better agreement
imaginary. Manipulation of Eq5) shows that this will occur  with experiment. As the barrier gets larger, the MR gets
when smaller and so particles arrive, on average, more quickly.
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barrier[from Eqg.(5)] is determined largely by the force term
and not byC. Thus, to summarize, choosir@gvia Eq. (10)
gives a smooth transition between the diffusion-controlled
and drift-controlled regimes in the description of the veloc-

ity.
V. SUMMARY

In this paper we have compared the information given
about transition processes using the instanton approach with
that from a numerical simulation. We have shown that a
proper comparison of results from the two methods requires
a consideration of the boundary conditions used to isolate
transitions, and that the instanton formulas are not valid
close to the boundaries. In addition we estimated a value for
the C constant from the free diffusion case, and examined its
pertinence for describing transitions with harmonic poten-

122 tials of various force constants. The value®fs only criti-
x 10 cal when the transition process is diffusion controlled. When
2 5 a high potential barrier is present, the valuefis much
’ smaller than the force and is thus less relevant. Finally, we
5t also evaluated the importance of the force derivative term.
5 s These results are also valuable for constructing biased impor-

tance sampling schemes to find optimum trajectories.

Our future work will be focused in two directions. First,
more theoretical work is necessary to elucidate the effect of
boundary conditions on the determination of transition times.
Second, we want to investigate the forms of the paths that
tive k (gray triangle$ and negativek (black boxeg show better fits the instanton approach gives In more than a single dimension
to the predicted velocities of E¢5) with a value forC given by Eq.  @nd how good a representation they are of the most probable
(10) (k<0 solid line, k>0 dotted ling than with C=0 (k<0,  Or average paths arising from numerical simulation. The cur-
short dashed linek>0, long dashed line Aa=b/100 and the rent work was a necessary preliminary to work in many di-
number of paths is 0 mensions because the distribution of arrival times and the
velocity with which a certain path is traveled helps determine
&he shape of a path on a multidimensional potential energy
§urface.

FIG. 4. Inverse of the local time vs position for Brownian mo-
tion in harmonic potentials. Togk|=1 and bottomk|=5. Posi-

The distributions of arrival times also get more compact, s
that there is less dispersion and the instantonic trajector
becomes more representative. Eventually @elefined in
Eq. (10) gives an imaginary velocity fox~0 and the total
Ten 1S UNdefined. A comparison with the simulation is im-  The authors would like to thank the European Union for
possible here because the region of imaginary velocity corsupport (to R.C) and also the Institut de Biologie
responds to the region where the instanton approach failStructurale—Jean-Pierre Ebel, the CommissarikEergie
Practically, however, the value @ is less relevant in these Atomique (CEA), and the Centre National de la Recherche
regimes as the magnitude of the velocity in the region of theScientifique(CNRS for support of this work.
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